NUMSc-2020 ক-বিভাগ

- ১। (ক) অপারেশনস্ রিসার্চ কী? [What is Operations Research?]
 - (খ) সুষম পরিবহন সমস্যা বলতে কী বুঝ? [What do you mean by balanced transportation problem?]
 - (গ) স্প্যানিং ট্রি সংজ্ঞায়িত কর । [Define a spanning tree.]
 - (ঘ) পূর্ণসংখ্যা প্রোগ্রামিং সমস্যা বলতে কী বোঝায়? [What is meant by integer programming?]
 - (৬) সিকুয়েন্সিং সমস্যা কী? [What is sequencing problem?]
 - (চ) শূন্য সমষ্টি গেইম কী? [What is zero sum game?]
 - (ছ) পে-অফ ম্যাট্রিক্স বলতে কী বোঝায়? [What is meant by pay-off matrix?]
 - জ) মিশ্র কৌশলের সংজ্ঞা দাও। [Define mixed strategy.]
 - (ঝ) আধিপত্য নীতি কী? [What is dominance rule?]
 - (এঃ) Decnsion tree বলতে কী বোঝায়? [What is meant by decision tree?]
 - (ট) অ-রৈখিক প্রোগ্রামিং সমস্যা কাকে বলে? [What is called non-linear programming problem?]
 - ঠি) অবতল ফাংশনের সংজ্ঞা দাও। [Define concave function.]

খ-বিভাগ

- ২। অপারেশনস্ রিসার্চের সমস্যাসমূহের সমাধানে ব্যবহৃত বিভিন্ন কৌশলসমূহ বর্ণনা কর। [Describe the various types of techniques for solving problems of Operations Research.]
- ৩। নিচের পরিবহন সমস্যার প্রাথমিক বুনিয়াদী অনুকূল সমাধান নির্ণয় কর, যেখানে ছকের ঘরে পরিবহন খরচ টাকায় দেওয়া আছে। [Find the initial basic feasible solution of the following transportation problem in which the cells contain the transportation cost in taka.]

গন্তব্য [Destination] উৎস [Origin]	D_1	D_2	D_3	D_4	D_5	সরবরাহ [Supply]
O_1	7	6	4	5	9	40
0_2	8	5	6	7	8	30
0_3	6	8	9	6	5	20
0_4	4	7	7	8	6	10
চাহিদা [Demand]	30	30	15	20	5	100

- 8। কর্ম-নিয়োগ সমস্যা সমাধানে হাঙ্গেরীয়ান পদ্ধতি বর্ণনা কর। [Describe the Hungarian method for solving assignment problems.]
- ে সিমপ্লেক্স পদ্ধতি ব্যবহার করে নিচের যোগাশ্রয়ী প্রোগ্রামিং সমস্যাটি সমাধান কর।
 [Solve the following linear programming problem by using simplex method.]

গরিষ্ঠকরণ কর [Maximize]: $z = x_1 + 4x_2 + 5x_3$

শর্তসমূহ [Subject to]:
$$3x_1 + 3x_3 \le 22$$

$$x_1 + 2x_2 + 3x_3 \le 14$$

$$3x_1 + 2x_2 \le 14$$

$$x_1, x_2, x_3 \ge 0$$

- ৬। ব্রাঞ্চ এবং বাউন্ভ প্রণালিটি বর্ণনা কর। [Describe Branch and Bound method.]
- ৭। দুটি মেশিনের মধ্য দিয়ে n-সংখ্যক কাজ প্রক্রিয়াকরণ প্রণালি বর্ণনা কর। [Describe the method of processing n jobs through 2 machines.]
- ৮। দেখাও যে, n-শীর্ষযুক্ত একটি ট্রি-এর (n-1) সংখ্যক ধার আছে। [Show that a tree with n vertices has (n-1) edges.]
- ৯। ডাইনামিক প্রোগ্রামিং সমস্যার বৈশিষ্ট্য বর্ণনা কর। [Describe the characteristics of dynamic programming problem.]

গ-বিভাগ

১০। নিচের সমস্যাটির দ্বৈত সিমপ্লেক্স পদ্ধতি দ্বারা সমাধান কর [Solve the following problem by dual simplex method]:

গরিষ্ঠকরণ কর [Maximize]: $z = -3x_1 - x_2$

শর্তসমূহ [Subject to]: $x_1 + x_2 \ge 1$

 $2x_1 + 3x_2 \ge 2$

 $x_1 \ge 0, x_2 \ge 0$

১১। নিচের পরিবহন সমস্যার চূড়ান্ত সমাধান নির্ণয় কর [Find the optimal solution of the following transportation problem]:

গন্তব্য [Destination] উৎস [Origin]	$D_{_1}$	D_2	D_3	D_4	D_5	সরবরাহ [Supply]
O_1	7	6	4	5	9	40
0_2	8	5	6	7	8	30
0_3	6	8	9	6	5	20
0_4	4	7	7	8	6	10
চাহিদা [Demand]	30	30	15	20	5	100

১২। একজন বিক্রয়কারীকে মোট পাঁচটি শহর A,B,C,D এবং E পারদর্শন করতে হয়। পাঁচটি শহরের মধ্যে দূরত্ব (শত কিলোমিটারে) দেওয়া হলো [A salesman has to visit five cities A,B,C,D and E. The distance (in hundred km) between the five cities are as follows]:

To From	A	В	С	D	E
A	_	2	4	7	1
В	5	_	2	8	2
C	7	6	-	4	6
D	10	3	5	_	4
E	1	2	2	8	_

যদি বিক্রয়কারী A শহর হতে যাত্রা আরম্ভ করে এবং পুনরায় A শহরে ফিরে আসে, তবে কোন পথ বাছাই করলে ভ্রমণে কম দূরত্ব অতিক্রম করতে হবে? [If the salesman starts from city A and has to come back to city A, which route should be selected so that total distance travelled is minimum?]

১৩। ব্রাঞ্চ ও বাউন্ড পদ্ধতির সাহায্যে সমস্যাটি সমাধান কর [Solve the following problem by Branch and Bound method]:

গরিষ্ঠকরণ কর [Maximize]: $z = 2x_1 + 3x_2$

শর্তসমূহ [Subject to]: $6x_1 + 5x_2 \le 25$

 $x_1 + 3x_2 \le 10$

 $x_1, x_2 \ge 0$ এবং পূর্ণসংখ্যা [and integers]

১৪। পাঁচটি কাজ অবশ্যই দুটি মেশিন A এবং B তে AB ক্রমে সম্পন্ন হবে। পাঁচটি কাজের জন্য একটি সিকুয়েন্স নির্ণয় কর যা মোট ব্যয়িত সময়কে ন্যূনতম করে। প্রক্রিয়াকরণ সময় নিচে দেওয়া হলো [There are five jobs each of which must go through the two machines A and B in the order AB. Determine a sequence for five jobs that will minimize the total elapsed time. Processing times are given below]:

কাজ [Work] মেশিন [Machine]	1	2	3	4	5
A	5	1	9	3	10
B	2	6	7	8	4

অতঃপর মোট ব্যয়িত লঘিষ্ঠ সময় ও প্রতিটি মেশিনের অলস সময় নির্ণয় কর। [Also find the total minimum elapsed time and the idle time for each machine.]

১৫। আধিপত্য নীতি ব্যবহার করে নিম্নোক্ত খেলা সমস্যাটির সমাধান কর [Use dominance rule to solve the following matrix game]:

খেলোয়াড় [Player] B

খেলোয়াড় [Player]

	B_1	B_2	B_3	B_4			
A_1	8	10	9	14			
A_2	10	11	8	12			
A_3	13	12	14	13			

১৬। $y_1, y_2, y_3, \ldots, y_n$ এর গুণফলটির বৃহত্তম মান নির্ণয়ের জন্য ডাইনামিক প্রোগ্রামিং ব্যবহার কর, যখন $y_1+y_2+y_3+\cdots+y_n=Q$ । [Use dynamic programming to find the maximum value of the product of $y_1, y_2, y_3, \ldots, y_n$ when $y_1+y_2+y_3+\cdots+y_n=Q$.]

১৭। কুন-টুকার শর্ত ব্যবহার করে সমাধান কর [Solve the following problem using Kuhn-Tucker conditions]:

লখিষ্ঠকরণ কর [Minimize]: $z = x_1^2 + x_2^2 + x_3^2$

শর্তসমূহ [Subject to]: $x_1 + x_2 + x_3 \ge 15$

 $x_1, x_2, x_3 \ge 0$