NUH-2011

- ৬। (ক) প্রমাণ কর যে, চিত্রণ $f(x,y)=x+y, X\times Y$ হতে X -এ এবং $g(\alpha,x)=\alpha x, R\times X$ হতে X -এ অবিচ্ছিন্ন, যেখানে X একটি নর্ম জগত এবং R বাস্তব ফিল্ড। [Prove that the mapping, $f(x,y)=x+y, X\times Y$ into X and $g(\alpha,x)=\alpha x, R\times X$ into X are continuous; where X is a normal space and R is the real number field]
 - (খ) প্রমাণ কর যে, l_p এর দৈত জগত l_q , যেখানে $1 এবং <math>\frac{1}{p} + \frac{1}{q} = 1$ [Prove that the dual space of l_p is l_q , where $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$]
- ৭। (ক) কচি-সোয়ার্জ-এর অসমতা বর্ণনা ও প্রমাণ কর। [State and prove Cauchy Schwartz inequality]
 - খে) হিলবার্ট জগত X-এর M এবং N যদি $M \perp N$ শর্কে বদ্ধ উপজগত হয়, তবে প্রমাণ কর যে, উপজগত $M+N=(x+y\in X:z\in M$ এবং $y\in N)$ বদ্ধ হবে । [If M and N are closed subspace of Hilbert space X Such that $M\perp N$, Prove that the subspace $M+N=(x+y\in X:z\in M$ and $y\in N)$ is also closed]
- ৮। (ক) উদাহরণসহ হিলবার্ট জগতের সংজ্ঞা দাও। যদি x ও y কোনো হিলবার্ট জগতের ভেক্টর হয় তবে প্রমাণ কর যে, $\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$ [Define Hilbert space with an example. If x and y are two vectors in a Hilbert space, then show that $\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$]
 - (খ) দেখাও যে, একটি হিলবার্ট জগত H-এর একটি আবদ্ধ উত্তল উপসেট C লঘিষ্ট নর্মবিশিষ্ট একটি অনন্য ভেক্টর ধারণ করে। [Show that s closed convex subset C of a Hilbert space H contains a unique vector of smallest norm]
- ৯। বানাক জগত বলতে কি বুঝ? প্রমাণ কর যে, $l_{\rm p},1\le {\rm p}<\infty$ জগতটি একটি বানাক জগত। [Define Banach space. Prove that the space $l_{\rm p},1\le {\rm p}<\infty$ is a Banach space]
- ১০। (ক) সংকোচন চিত্রণ এর সংজ্ঞা দাও। বানাকের সংকোচন নীতি বর্ণনাসহ প্রমাণ কর। [Define Contraction mapping. State and prove Banach Contraction Theorem]

ফাংশনাল বিশ্লেষণ

- (খ) (i) $f(x)=-x \forall x \in [-2,-1] \cup [1,2]$ চিত্রণটির কোন নির্দিষ্ট বিন্দু আছে কি-না ব্যাখা কর। [Explain whether the mapping $f(x)=-x \forall x \in [-2,-1] \cup [1,2]$ has any fixed point]
- (ii) মনে করি, $T:R\to R$ চিত্রটি $T(x)=\frac{1}{2}x$ দ্বারা সংজ্ঞায়িত। দেখাও যে, T বানাক সংকোচন নীতি সিদ্ধ করে এবং T এর একটি অনন্য নিদিষ্ট বিন্দু আছে। [Let $T:R\to R$ be defined by $T(x)=\frac{1}{2}x$. Show that T satisfies the Banach Contraction Principle and T has a unique fixed point]