NUH-2017

ক-বিভাগ

- ১। (ক) বাস্তব সূচক কাকে বলে? [What is called real index?]
 - (খ) টেনসর ক্ষেত্র কি? [What is tensor field?]
 - (গ) সহচল ভেক্টর বলতে কী বুঝ? [What do you mean by covariant vector?]
 - ্ঘ) মিশ্র টেনসরের সংকোচনের সংজ্ঞা দাও। [Define contraction of mixed tensor.]
 - (ঙ) $ds^2 = dx^2 + dy^2 + dz^2$ এর সাপেক্ষে g এর মান কত? [What is the value of g corresponding to $ds^2 = dx^2 + dy^2 + dz^2$?]
 - (চ) গোলকীয় স্থানাঙ্কে মেট্রিক লিখ। [Write the metric in spherical coordinates.]
 - (ছ) প্রতিচল ভেক্টরের সহচল অন্তরজ কী? [What is covariant derivative of a contravariant vector?]
 - (জ) $B^p_{q,r}$ টেনসরের রূপান্তর সূত্র লিখ । [Write down the transformation formula of the tensor $B^p_{q,r}$]
 - (ঝ) কনজুগেট মেট্রিক টেনসর বলতে কী বুঝ? [What do you mean by conjugate matric tensor?]
 - (এঃ) ইনট্রনসিক অন্তরজের সংজ্ঞা দাও। [Define intrinsic derivative.]
 - (ট) আয়তাকার স্থানাঙ্কে দ্বিতীয় শ্রেণির ক্রিস্টোফেল প্রতীকের মান কী? [What is the value of Christoffel symbol of second kind in rectangular coordinates?]
 - (ঠ) রিমানীয় জগতে জিওডেসিকের অন্তরক সমীকরণ বিবৃত কর। [Enunciate the differential equation of geodesic in Riemannian space.]

টেনসর বিশ্লেষণ

খ-বিভাগ

- ২। দেখাও যে, দুইটি টেনসর A_r^{pq} এবং B_t^s -এর অন্তঃস্থ গুণন একটি তিন মাত্রার টেনসর। [Show that, the inner product of two tensors A_r^{pq} and B_t^s is a tensor of rank three.]
- ৩। $g_{ij}=0\ (i
 eq j)$ জগতের জন্য দ্বিতীয় প্রকার ক্রিস্টোফেল প্রতীক নির্ণয় কর। $[\mbox{Derive the Christoffel symbol of } 2^{nd} \mbox{ kind for the space}$ $g_{ij}=0\ (i
 eq j)\ .]$
- 8 । দেখাও যে, $g_{ij} \, dx^i dx^j$ একটি অপরিবর্তক । [Show that, $g_{ij} \, dx^i dx^j$ is an invariant.]
- ৫। প্রমাণ কর যে, দুই মাত্রার সহচল টেনসরকে প্রতিসম ও অপ্রতিসম টেনসরের যোগফলরূপে প্রকাশ করা যায়। [Prove that, every covariant tensor of rank two can be expressed as the sum of symmetric and skewsymmetric tensors.]
- ঙ। $R_{\rm hijk}$ -এর সূত্র লিখ। সূত্রটি ব্যবহার করে দেখাও যে, $R_{\rm iijk}=0$ [Write down the formula of $R_{\rm hiik}$. Using this formula to show that, $R_{\rm iiik}=0$.]
- ৭। মূল্যায়ন কর [Evaluate]: $\begin{cases} i \\ b \end{cases} \begin{cases} b \\ i \end{cases} \begin{cases} i \\ b \end{cases} \begin{cases} b \\ i \end{cases}$
- ৮। দেখাও যে, রিসি টেনসর R_{ij} প্রতিসম। [Show that, the Ricci tensor R_{ij} is symmetric.]

জাতীয় বিশ্ববিদ্যালয়ের প্রশ্নপত্র

ৡ। প্রমাণ কর যে [Prove that], $\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^i}\Big(\sqrt{g}\,g^{ij}\Big) + iggl\{j\} g^{ik} = 0;$ যেখানে গ-বিভাগ

- ১০। আয়তাকার স্থানাঙ্কে প্রথম শ্রেণির ক্রিস্টোফেল প্রতীক নির্ণয় কর। [Evaluate the Christoffel symbol of first kind in rectangular co-ordinates.]
- ১১। (ক) যদি $\overline{A}_r^p = \frac{\partial \overline{X}^p}{\partial x^q} \frac{\partial x^s}{\partial \overline{x}^r} A_s^q$ হয়, তবে দেখাও যে [If $\overline{A}_r^p = \frac{\partial \overline{X}^p}{\partial x^q} \frac{\partial x^s}{\partial \overline{x}^r} A_s^q$ then show that],

$$A_{s}^{q} = \frac{\partial x^{q}}{\partial \overline{x}^{p}} \frac{\partial \overline{x}^{r}}{\partial x^{s}} \overline{A}_{r}^{p}$$

- ১২। (ক) দেখাও যে, g^{ij} একটি দুই মাত্রার প্রতিসম প্রতিচল টেনসর। [Show that, g^{ij} is a symmetric contravariant tensor of rank two.]
 - (খ) $R^i_{ijk}=0$ ব্যবহার না করে প্রমাণ কর যে, $g^{hi}R_{hijk}=0$ । [Prove that, $g^{hi}R_{hijk}=0$ without the aid of $R^i_{ijk}=0$.]
- ১৩। দেখাও যে, দুই মাত্রার মিশ্র টেনসরের সহচল অন্তরক সহগ একটি তিন মাত্রার মিশ্র টেনসর। [Show that, the covariant derivative of second order mixed tensor is a third order mixed tensor.]

টেনসর বিশ্লেষণ

- ১৫। প্রমাণ কর যে, সহচল বক্রতা টেনসর R_{hijk} এর পৃথক অশূন্য উপাদান সংখ্যা $\frac{1}{12}n^2\Big(n^2-1\Big)$ -এর বেশী নয়। [Prove that, the number of distinct non-vanishing components of the covariant curvature tensor R_{hijk} does not exceed $\frac{1}{12}n^2\Big(n^2-1\Big)$.]
- ১৬ । (ক) দেখাও যে [Show that], $g_{ij}u^iv^j=g^{ij}u_iv_j$
 - (খ) প্রমাণ কর যে [Prove that],

$$divA^{ij} = A^{ij}, j = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}} \left(A^{ij} \sqrt{g} \right) + A^{jk} \begin{Bmatrix} i \\ j & k \end{Bmatrix}$$

১৭। দেখাও যে, ম্যাক্সওয়েলের তড়িৎ-চৌম্বকীয় সমীকরণকে টেনসর আকারে প্রকাশ করা যায়। [Show that, Maxwell's electromagnetic field equations can be expressed as tensor form.]