NUH-2014 ক-বিভাগ

- ১। (ক) কখন একটি মেট্রিক জগতকে সম্পূর্ণ বলা হয়? [When a metric space is said to be complete?]
 - (খ) আপেক্ষিক টপোলজি বলতে কি বুঝ? [What do you mean by relative topology?]
 - (গ) টপোলজির স্থানীয় ভিত্তি বলতে কি বুঝ? [What do you mean by local base of topology?]
 - (ঘ) নিয়মিত জগত বলতে কি বুঝ? [What do you mean by a regular space?]
 - (ঙ) গণনযোগ্য জগত কী? [What is countable space?]

খ-বিভাগ

- ২। যদি (X,d) একটি মেট্রিক জগত হয়, তবে দেখাও যে, $d_1(x,y)=$ লঘুমান $\{1,d(x,y)\}$ দ্বারা বর্ণিত d_1,X এর উপর একটি মেট্রিক। [If(X,d) be a metric space, then show that, d_1 defined by $d_1(x,y)=$ min $\{1,d(x,y)\}$ is also a metric on X
- ৩। মনে কর, $X = \{a,b,c,d,e\}$ এবং $A = \{\{a,b,c\},\{c,d\},\{d,e\}\}$ তাহলে A দ্বারা সূজিত X এর টপোলজি নির্ণয় কর। [Let $X = \{a,b,c,d,e\}$ and $A = \{\{a,b,c\},\{c,d\},\{d,e\}\}$. Then find the topology on X generated by A]
- 8। প্রমাণ কর যে, হাউসডর্ফ জগতের প্রত্যেক অভিসারি অনুক্রমের একটি মাত্র সীমা বিন্দু আছে। [Prove that, every convergent sequence in a Hausdorff space has a unique limit]
- ৫। দেখাও যে, যুক্ত জগতের একটি অবিচ্ছিন্ন প্রতিচ্ছবি যুক্ত। [Show that, a continuous image of a connected space is connected]

গ-বিভাগ

- ১০। দেখাও যে, একটি পূর্ণ মেট্রিক জগতের যেকোন উপজগত পূর্ণ হবে যদি এবং কেবলমাত্র যদি উপজগতটি বদ্ধ হয়। [Show that, any subspace of a complete metric space is complete iff the subspace is closed]
- ১১। (ক) টপোলজি জগতের সংজ্ঞা দাও। যদি T_1 ও T_2 , X সেটের দুইটি টপোলজি হয়, তাহলে প্রমাণ কর যে, $T_1 \cap T_2$ সর্বদাই টপোলজি কিন্তু $T_1 \cup T_2$ টপোলজি

টপোলজি

নাও হতে পারে ৷ [Define topological space. If T_1 and T_2 are two topologies on a set X, then prove that $T_1 \cap T_2$ is always a topology on X but $T_1 \cup T_2$ may not be a topology on the set]

- (খ) একটি টপোলজি জগত X এর উপসেট A এর অভ্যন্তর বিন্দু, আবদ্ধক ও সীমানা বিন্দুর সংজ্ঞা দাও। প্রমাণ কর যে, $\operatorname{cl}(A) = \operatorname{int}(A) \cup \operatorname{b}(A)$ [Define the interior, the closure and the boundary of a set A of a topological space X. Prove that, $\operatorname{cl}(A) = \operatorname{int}(A) \cup \operatorname{b}(A)$]
- ১২।প্রমাণ কর যে, একটি টপোজগত (X,T) নর্মাল হবে যদি এবং কেবলমাত্র যদি প্রত্যেক খোলা সেট H এবং বদ্ধ সেট F যেন $F \subset H$ এর একটি খোলা সেট G বিদ্যমান যেন $F \subset G \subset \overline{G} \subset H$ [Prove that, a topological space (X,T) will be normal iff for every open set H and a closed set F such that $F \subset H$ there is an open set G such that, $G \subset G \subset G \subset H$
- ১৩।মনে কর, X হলো একটি টপোজগত এবং A হলো X এর একটি সংযুক্ত উপজগত। যদি B,X এর একটি উপজগত হয়, যেন $A\subseteq B\subseteq \overline{A}$ তাহলে প্রমাণ কর যে, B সংযুক্ত বিশেষ করে \overline{A} সংযুক্ত। [Let X be a topological space and A be a connected subspace of X. If B be a subspace of X such that $A\subseteq B\subseteq \overline{A}$ then prove that B is connected. Particularly \overline{A} is connected]