NUH-2018

ক-বিভাগ

- 🕽 । (ক) ট্রিভিয়াল মেট্রিক কী? [What is a trivial metric?]
 - (খ) সহ-গণনযোগ্য টপোলজি বলতে কী বুঝ? [What do you mean by a co-countable topology?]
 - (গ) টপোলজি এর ভিত্তি বলতে কী বুঝায়? [What is meant by a base of a topology?]
 - (ঘ) কখন টপোলজি জগতকে সম্পূর্ণরূপে অভিলম্ব বলা হয়? [When a topological space is called completely normal?]
 - (৬) টপোলজি জগতে পৃথকীকৃত সেট বলতে কী বুঝায়? [What is meant by separated sets in the topological space?]
 - (চ) কোন শর্তে টপোলজি জগতে (X,T) গণনযোগ্যভাবে সংবদ্ধ হবে? [Under what condition the topological space (X,T) will be countably compact?]

খ-বিভাগ

- ২। যদি (X,d) একটি মেট্রিক জগত হয়, তবে দেখাও যে, $d_1(x,y)=$ লঘুমান $\{1,d(x,y)\}$ দ্বারা বর্ণিত d_1,X এর উপর একটি মেট্রিক। [If (X,d) be a metric space, then show that d_1 , defined by $d_1(x,y)=$ min $\{1,d(x,y)\}$ is also a metric on X.]
- ৩। \varnothing সহ $E_n=\{n,n+1,n+2,\ldots,\}$ যেখানে $n\in\mathbb{N}$ আকারের \mathbb{N} এর সকল উপসেটের শ্রেণি T . দেখাও যে, \mathbb{N} এর একটি টপোলজি T . [Let T be the class of subsets of \mathbb{N} consisting of \varnothing and all subsets of \mathbb{N} of the form $E_n=\{n,n+1,n+2,\ldots,\}$ with $n\in\mathbb{N}$. Show that T is a topology on \mathbb{N} .]
- 8। প্রমাণ কর যে, হাউসডর্ফ জগতের প্রত্যেক অভিসারী অনুক্রমের একটি মাত্র সীমা বিন্দু আছে। [Prove that every convergent sequence in a Hausdorff space has a unique limit.]
- ৫। দেখাও যে, প্রত্যেক দ্বিতীয় গণনযোগ্য জগত পৃথকীকরণযোগ্য। [Show that every second countable space is separable.]

গ-বিভাগ

- ১০। দেখাও যে, একটি পূর্ণ মেট্রিক জগতের যেকোনো উপজগত পূর্ণ হবে যদি এবং কেবলমাত্র যদি উপজগতটি বদ্ধ হয়। [Show that any subspace of a complete metric space is complete if and only if the subspace is closed.]
- ১১। দেখাও যে, টপোলজি জগত X এর একটি উপসেট A বদ্ধ হবে যদি এবং কেবল যদি A সেটটি সকল পুঞ্জ বিন্দু ধারণ করে। [Show that a subset A of a topological space X is closed if and only if A contains of its accumulation points.]
- ১২। ধর, eta একটি অশূন্যক সেট X এর উপসেটসমূহের একটি সেট। প্রমাণ কর যে, X এর উপর টপোলজি T এর জন্য eta একটি ভিত্তি হবে যদি এবং কেবল যদি
 - (i) $X = \bigcup \{B : B \in \beta\};$
 - (ii) যে কোনো $B_1,B_2\in\beta$ এবং যেকোনো বিন্দু $x\in B_1\cap B_2$ এর জন্য β এর একটি সদস্য B_3 থাকবে যেন $x\in B_3$ এবং $B_3\subset B_1\cap B_2$ হয়। [Let β be a class of subsets of a non-empty set X. Then prove that β is a base for some topology T on X if and only if:
 - (i) $X = \bigcup \{B : B \in \beta\};$
 - (ii) For any $B_1, B_2 \in \beta$ and any point $x \in B_1 \cap B_2$ there is a member B_3 of β such that $x \in B_3$ and $B_3 \subset B_1 \cap B_2$.]
- ১৩। ধর, X একটি টপোলজি জগত এবং A,X এর একটি যুক্ত উপজগত। যদি B,X এর একটি উপজগত হয়, যেন $A\subseteq B\subseteq \overline{A}$ হয়, তবে প্রমাণ কর B যুক্ত। বিশেষভাবে \overline{A} যুক্ত। [Let X be a topological space and A be a connected subspace of X. If B is a subspace of X such that $A\subseteq B\subseteq \overline{A}$, then prove that B is connected. Particularly \overline{A} is connected.]